Abstract

The progress made toward the definition of a modular compact modeling technology for graphene field-effect transistors (GFETs) that enables the electrical analysis of arbitrary GFET-based integrated circuits is reported. A set of primary models embracing the main physical principles defines the ideal GFET response under DC, transient (time domain), AC (frequency domain), and noise (frequency domain) analysis. Another set of secondary models accounts for the GFET non-idealities, such as extrinsic-, short-channel-, trapping/detrapping-, self-heating-, and non-quasi static-effects, which can have a significant impact under static and/or dynamic operation. At both device and circuit levels, significant consistency is demonstrated between the simulation output and experimental data for relevant operating conditions. Additionally, a perspective of the challenges during the scale up of the GFET modeling technology toward higher technology readiness levels while drawing a collaborative scenario among fabrication technology groups, modeling groups, and circuit designers, is provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.