Abstract

CMOS compatible electrooptic plasmonic modulators are slated to be key components in chip-scale photonic circuits. In this work, we investigate detailed design and optimization protocols for electrooptic plasmonic modulators that are suitable for free-space coupling and on-chip integration. The metallic structures in the proposed devices offer simultaneous electric and optical functions. The resonance-enhanced nonlinear interaction and submicrometer-footprint of these devices meet the stringent requirements for future CMOS modulators, allowing for high-speed operation (>100 GHz) with a decent modulation depth (>3 dB) and moderate insertion loss (<3 dB) at a very low swing voltage ( approximately 1 V) and power dissipation ( approximately 1 fJ/bit). The realization of the proposed structures appears feasible with current materials and lithographic techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.