Abstract

Heat transfer is one of the key aspects of machineries, devices and industrial processes for maintaining their functionality and also for achieving better product quality. Hence, heat exchangers of different types and sizes are used in these applications with the purpose of removing the extra process/device heat to maintain the desirable working temperatures. However, the size of a heat exchanger is a major consideration for any type of process/device as it decides the space requirements (i.e., the size) of the machine/device or the processing plant. At first, this study aims to investigate the design procedure of a heat exchanger theoretically and then its performance will be analyzed and optimized using computational fluid dynamics. For the design purposes, a counter flow heat exchanger was considered and its length was theoretically calculated with the LMTD method while the pressure drop and energy consumption were also calculated with the Kern method. Afterwards, a computational model of the same heat exchanger was implemented with ANSYS and then this model was extended to six different models by altering its key design parameters for the optimization purposes. Eventually, these models were used to analyze the heat transfer behavior, mass flow rates, pressures drops, flow velocities and vortices of shell and tube flows inside the heat exchanger. Theoretical and CFD results showed only a 1.05% difference in terms of the cooling performance of the hot fluid. The axial pressure drops showed positive correlations with both the overall heat transfer coefficient and pumping power demand. Overall, the results of this study confirms that CFD modelling can be promising for design and optimization of heat exchangers and it allows testing of numerous design options without fabricating physical prototypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call