Abstract

Compact heat exchangers using supercritical fluids such as CO 2 are preferred due to their high heat transfer capacity and smaller footprint. Three-dimensional conjugate forced convection heat transfer analysis was performed on several shell-and-tube counter-flow microchannel heat exchangers. Numerical simulations were conducted to test effect of change in mass flow rate, hydraulic diameter and various cross sections on the heat transfer. Increasing mass flow rate improved heat transfer up to a maximum value and then decreased downstream with increasing turbulence. Maximum heat transfer was obtained for the micro channel with the smallest hydraulic diameter. Amongst the cross sections analyzed (circular, square, circular with radial ribs, and square with radial ribs), the most uniform distribution of temperature and maximum heat transfer were obtained for circular cross section with radial ribs. An optimally efficient operation of such a heat exchanger can be attained by considering these factors during multi-objective constrained optimization of geometric parameters and requirements for additive manufacturing of such compact heat exchangers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call