Abstract
A Hankel form on a Hilbert function space is a bounded, symmetric, bilinear form [., .] satisfying [fx, y] = [x, fy] for a class of multipliers f. We prove analogs of Weyl–Horn and Ky Fan inequalities for compact Hankel forms, and apply them to estimate the related eigenvalues, both for Hardy–Smirnov and Bergman spaces norms associated to multiply connected planar domains. In the case of the unit disk, we investigate the asymptotic of some measures constructed by eigenfunctions of Hankel operators with certain Markov functions as symbols.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have