Abstract

In this letter, we present a planar half-Luneburg lens antenna based on a glide-symmetric dielectric structure. The proposed half-Luneburg lens antenna provides a compact alternative to planar beamformers such as conventional Luneburg and Rotman lenses, as well as pillbox antennas. Importantly, we demonstrate that the peak gain of the half-Luneburg lens antenna is less than 1 dB lower than the peak gain of a conventional Luneburg lens antenna, despite being almost half the size. The proposed antenna can steer its beam in a 50 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$^{\circ }$</tex-math></inline-formula> range with scan losses lower than 2 dB and side lobe levels below <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$-$</tex-math></inline-formula> 10 dB. The proposed design is validated experimentally with a robust and cost-effective implementation using additive manufacturing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call