Abstract
The growing demand for tailored detectors in capillary electrophoresis (CE), addressing tasks like field deployment or dual-detection analysis, emphasizes the necessity for compact detection cells. In this work, we propose cost-effective and user-friendly additive manufacturing (3D-printing) approaches to produce such miniaturized detection cells suitable for a range of CE applications. Firstly, capacitively-coupled contactless conductivity detection (C4D) cells of different sizes are fabricated by casting low-melting-point alloy into 3D-printed molds. Various designs of Faraday shields are integrated within the cells and compared. A mini-C4D cell (9.5×7.0×7.5 mm3) is produced, with limits of detection for alkaline cations ranging from 8-12 μM in a short–capillary based CE application. Secondly, ultraviolet photometric (UV-PD) detection cells are fabricated using 3D printing. These cells feature two narrow slits with a width of 60 μm, which are positioned along the path of incident and transmission light to facilitate collimation. A deep UV-LED (235 nm or 255 nm) is employed as the light source, and black resin is determined to be the optimal material for 3D printing the UV-PD cell, owing to its superior UV light absorption capabilities. The UV-PD cell is connected to the LED and photodetector through two optical fibers, making it easy to switch the light source and detector. The effective pathlength and stray light percentage for detecting on a 75 μm id capillary are 74 μm and 0.5 %, respectively. Thirdly, a dual-detection cell that combined C4D and UV-PD at a single detection point is proposed. The performance of direct detection by C4D and indirect detection by UV-PD is compared for detecting organic acids. The strategies for developing cost-effective compact detection cells facilitate the versatile integration of multiple detection methods in CE analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.