Abstract

A compact charge model for double-gate metal–oxide–semiconductor field-effect transistors with the quantum confinement effect is presented. In addition to the Poisson equation, the density-gradient equation with a realistic boundary condition is considered to include the quantum confinement effect. The coupled governing equations are rigorously integrated. Contribution of the density-gradient equation is clearly identified. Based on the resultant integrated equation, a compact charge model is proposed. Expressions for model parameters are found. Numerical examples for various double-gate MOS structures are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.