Abstract

A compact substrate integrated waveguide (SIW) with open complementary split-ring resonators (OCSRRs) loaded on the waveguide surface is proposed. The OCSRRs can be interpreted in terms of electric dipoles and they are good candidates to behave as electric scatterers. By loading OCSRRs on the waveguide surface, a forward-wave pass-band propagating below the waveguide cutoff frequency is generated. The resonance frequency of the OCSRRs is approximately half of the resonance frequency of the complementary split ring resonator (CSRR). Therefore, the electrical size of this particle is larger than the CSRRs and the OCSRRs are more appropriate for the SIW miniaturization. A bandpass response with a sharp rejection frequency band is obtained by properly manipulating the structure of the elements. By changing the orientation of the OCSRRs, two types of unit cell are proposed. Moreover, by resizing the OCSRRs, resonance frequency can be easily moved and the bandwidth can be tuned by the coupling between two OCSRRs. Compared with some other reported bandpass filters (BPFs) with SIW technique, the presented BPF has great improvements on size reduction and selectivity. To verify the methodology, two filters with center frequency of 5.5 GHz are designed and measured. The measured results are in good agreement with the simulated ones. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:674–682, 2016.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call