Abstract

This brief presents a compact and efficient resonance-shift insensitive wireless power transfer (WPT) system. This is possible by using a small electrical length defected ground structure (DGS) resonator, which is found effective against the resonance-shift phenomenon resulted from the higher permittivity of the tissue. Tissue has two undesired effects on a WPT system: (i) reduced coupled quality factor, and (ii) self-resonance shifting that leads to mismatch loss. So, the efficiency of a WPT system degrades in a tissue environment. Then, using the small electrical length DGS, we build a WPT transmitter (TX) using three cooperative DGS resonators to mitigate both issues. The fabricated prototype operates at 49 MHz in the air and tissue. This shows no change in operating frequency when the same receiver (Rx) is kept in the air or embedded inside tissues, which proves the effectiveness of the proposed cooperative DGS-WPT system against the resonance shift. The measured efficiency is 62% when the RX is embedded inside the tissue and is 68% in the air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.