Abstract

The development of femtosecond lasers has continued rapidly over the past decade from laboratory systems to an impressive range of commercial devices. Novel materials, notably quantum-dot semiconductor structures, have enhanced the characteristics of such lasers and opened up new possibilities in ultrafast science and technology. In our most recent work, it has been demonstrated that quantum-dot structures can be designed to provide an efficient means for the generation and amplification of ultrashort optical pulses at high repetition rates. The work also confirms that quantum dot based semiconductor saturable absorber mirrors exhibit a degree of flexibility which allows control and tuning of the ultrashort pulse laser systems. Further developments in ultrashort-pulse solid-state, fibre and semiconductor external cavity lasers, by means of both active and passive semiconductor quantum dot components are also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call