Abstract

A compact and flexible circuit for operating avalanche photodiodes in Geiger mode was designed, fabricated, and tested. A new voltage driver stage, based on fast n-channel double-diffused metal–oxide–semiconductor (DMOS) transistors in a bootstrap configuration, makes it possible to obtain quenching pulses up to 25 V amplitude and fast active reset of the detector. At 20 V excess bias voltage above the photodiode breakdown level, an overall deadtime shorter than 36 ns is attained. The avalanche pulse charge is minimized by means of a mixed passive–active quenching approach, thus reducing self-heating and afterpulsing effects in the photodiode. A user-controllable hold-off time is available for further reducing the afterpulsing effect. The saturated counting rate of the circuit exceeds 25 Mcounts/s, but, by working with avalanche photodiodes with high breakdown voltage (250–400 V) and high avalanche current (10–40 mA), a practical limit is set at about 9 Mcounts/s by thermal effects in the detector. Gated-detector operation with gate times down to 10 ns is provided. The suitability of the new active-quenching circuit for the development of compact, all-solid-state instruments for high-performance photon counting was verified in experimental tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.