Abstract
CoMoO4 materials were prepared through a simple hydrothermal method and developed as highly efficient peroxidase mimics for colorimetric determination of H2O2. Based on the different experimental conditions in the synthesis process, the CoMoO4 materials present distinct morphologies, structures, surface properties, and peroxidase mimetic activities. Among them, CoMoO4 nanobelts (NBs) display the best intrinsic peroxidase mimetic abilities due to the high-energy (100) facet exposed, more Co active sites at (100) facet, more negative potential, and larger specific surface area. It can efficiently catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 to generate a blue oxide. In view of the excellent peroxidase mimetic catalytic activity of CoMoO4 NBs, a rapid, convenient, and ultrasensitive method was successfully established for the visual and colorimetric determination of H2O2. The method exhibits goodselectivity, practicability, stability, and reusability, and has a detection limit of0.27μM. The peroxidase mimetic catalytic mechanism of CoMoO4 NBs was illustrated according to the kinetic and active species trapping experiments. The method has a good potential forrapid and sensitive determination of H2O2 for biomedical analysis. Graphical abstract Schematic presentation of the process of CoMoO4 nanobelts catalyzing the oxidation of peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2 to generate a typical blue color, which can be applied in rapid and ultrasensitive detection of H2O2 visually.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.