Abstract
This study aims to estimate passenger demand for Urban Air Mobility (UAM) and analyze the feasibility of operating the system in Northern California. UAM is a concept mode of transportation that is designed to bypass ground congestion for time-sensitive, price-inelastic travelers using autonomous, electric aircraft with Vertical Takeoff and Landing (VTOL) capabilities. This study focuses specifically on commuting trips, which are frequent and considered relatively more time-sensitive than other types of personal trips. The UAM mode's feasibility is studied using sensitivity analysis of UAM demand to cost per passenger mile and the number of vertiports placed in the region. This study also explores the spatial distribution of UAM demand in Northern California, which further helps in identifying the major commuter trip-attraction and trip-production zones for the UAM mode in the region. The results indicate that sufficient UAM demand for commuting trips can only be reached at optimistically low UAM offered fares. These fare levels could be challenging to obtain given the high real estate cost in Northern California's urban regions. Moreover, the reliability of the UAM mode must be comparable to the automobile mode; otherwise, it loses significant demand with increasing delays. The results also show that the commuting flows with promising UAM demand in Northern California are heavily one-directional, with San Francisco Financial District being a major attraction. Other types of trips should also be considered along with commuting trips to generate an economically viable system and reduce deadheading.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have