Abstract

ABSTRACTAn interesting result, obtaining by some theorems of Asano, Köthe and Warfield, states that: “for a commutative ring R, every module is a direct sum of uniform modules if and only if R is an Artinian principal ideal ring.” Moreover, it is observed that: “every ideal of a commutative ring R is a direct sum of uniform modules if and only if R is a finite direct product of uniform rings.” These results raise a natural question: “What is the structure of commutative rings whose all proper ideals are direct sums of uniform modules?” The goal of this paper is to answer this question. We prove that for a commutative ring R, every proper ideal is a direct sum of uniform modules, if and only if, R is a finite direct product of uniform rings or R is a local ring with the unique maximal ideal ℳ of the form ℳ = U⊕S, where U is a uniform module and S is a semisimple module. Furthermore, we determine the structure of commutative rings R for which every proper ideal is a direct sum of cyclic uniform modules (resp., cocyclic modules). Examples which delineate the structures are provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call