Abstract

A theorem from commutative algebra due to Köthe and Cohen-Kaplansky states that, “a commutative ring R has the property that every R-module is a direct sum of cyclic modules if and only if R is an Artinian principal ideal ring”. Therefore, an interesting natural question of this sort is “whether the same is true if one only assumes that every ideal is a direct sum of cyclic modules?” The goal of this paper is to answer this question in the case R is a finite direct product of commutative Noetherian local rings. The structure of such rings is completely described. In particular, this yields characterizations of all commutative Artinian rings with this property.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.