Abstract

Abstract To any poset or quasi-poset is attached a lattice polytope, whose Ehrhart polynomial we study from a Hopf-algebraic point of view. We use for this two interacting bialgebras on quasi-posets. The Ehrhart polynomial defines a Hopf algebra morphism with values in \mathbb{Q}[X] . We deduce from the interacting bialgebras an algebraic proof of the duality principle, a generalization and a new proof of a result on B-series due to Whright and Zhao, using a monoid of characters on quasi-posets, and a generalization of Faulhaber’s formula. We also give non-commutative versions of these results, where polynomials are replaced by packed words. We obtain, in particular, a non-commutative duality principle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.