Abstract
Abstract To any poset or quasi-poset is attached a lattice polytope, whose Ehrhart polynomial we study from a Hopf-algebraic point of view. We use for this two interacting bialgebras on quasi-posets. The Ehrhart polynomial defines a Hopf algebra morphism with values in \mathbb{Q}[X] . We deduce from the interacting bialgebras an algebraic proof of the duality principle, a generalization and a new proof of a result on B-series due to Whright and Zhao, using a monoid of characters on quasi-posets, and a generalization of Faulhaber’s formula. We also give non-commutative versions of these results, where polynomials are replaced by packed words. We obtain, in particular, a non-commutative duality principle.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have