Abstract

Maerl beds are highly biodiverse biogenic substrata that have been receiving increasing attention in the last decade. Although maerl beds represent important nursery areas for commercial fishes and molluscs, little is known on the trophic web of their communities. Community structure parameters of maerl bed of the Bay of Brest (species richness, abundance, biomass and dominating species) were studied in parallel with the carbon and nitrogen isotopic composition of their main benthic species (macrofaunal, and megafaunal organisms) in order to assess the trophic levels and differences in the potential food sources of maerl inhabitants. The major potential sources of energy were identified to originate either from epiphytic macroalgae and microphytobenthos both growing on maerl thalli, together with sedimenting (sedimentary) particulate organic matter (POM) originating from the water column. The majority of the macro- and megafaunal organisms investigated were filter feeders, selective-deposit feeders and predators/scavengers. Filter feeders fall into three different groups representing different trophic pathways (i) sponges feeding directly on POM (water column filter feeders I), (ii) ascidians and holothurians feeding on POM and probably captured pelagic preys (water column filter feeders II), and (iii) filter feeding molluscs and crustaceans were hypothesised to feed on microphytobenthos or on decaying sedimented POM (Interface filter feeders). Selective deposit feeders were also divided into two subgroups. Carnivores were also distinguished between those with scavenging habits and true predators. Coupling of the trophic levels observed with the community biomass structure revealed that most of the benthic biomass derives its food from detritic sedimented POM and/or microphytobenthos, with interface filter feeders (23% of the biomass), selective deposit feeders (12%). Carnivores made up to 14% of the total biomass. Generally stable isotopes ratio mean values overlap and cover a large range within feeding types, indicating a strong overlap in food sources and a high degree of complexity of the food web presumably due to the diversity of the potential food sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.