Abstract

In this study, we established the nitrate-reducing, aromatic compound-degrading enrichment culture pMB18. Its community structure was controlled by the aromatic substrate applied. In the presence of a p-alkylated substrate, microorganisms related to Sulfuritalea, Ignavibacterium and Comamonadaceae were abundant. Non-p-alkylated structural analogues promoted the enrichment of Azoarcus, which was probably favored by the excretion of nitrite. The analysis of the bamA gene, which is a functional marker for anaerobic aromatic compound degradation, as well as a differential abundance analysis suggested the involvement of Sulfuritalea and Comamonadaceae in the degradation of p-alkylated substrates. Members of the genus Azoarcus were assumed to be the key players for the degradation of the non-p-alkylated substrates. A gene cluster encoding a putative 4-methylbenzoyl-CoA reductase, which is supposed to be specific for the dearomatization of p-alkylated benzoyl-CoA intermediates, was detected in culture pMB18 dominated by Sulfuritalea, Ignavibacterium and Comamonadaceae, but not in an Azoarcus-dominated culture. This study allowed insight into a microbial community, whose composition was guided by the aromatic substrate applied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call