Abstract

The behaviour of microbial populations responsible for degradation of the aromatic compounds, phenol, benzoate, and salicylate, and changes of microbial community structures in seawater microcosms were analysed quantitatively and qualitatively using MPN-PCR and PCR-DGGE. The purpose of the study was to investigate the ecology of the entire microbial community during bioremediation. Bacterial populations possessing catechol 1,2-dioxygenase (C12O) DNA were evidently the primary degraders of phenol and benzoate, but others possessing catechol 2,3-dioxygenase (C23O) DNA increased to enhance substrate degradation under high-load conditions when the substrates were present for long periods. However, salicylate degradation was evidently facilitated by specific bacterial populations possessing C23O DNA. PCR-DGGE analyses suggested that bacterial populations already relatively dominant in the original microcosm contributed to phenol degradation. Bacteria composing a minor fraction of the original population apparently increased and contributed to benzoate degradation. Bacterial populations possessing C23O DNA were responsible for salicylate degradation, however, and different degrading bacteria were evidently selected for, depending on the initial salicylate concentration. Microbial community structure tended to be simplified by aromatic compound degradation. Thus, microbial monitoring can elucidate the behaviour of bacterial populations responsible for aromatic compound degradation and be used to assess the effects of bioremediation on intact microbial ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call