Abstract

Community assembly research has mostly focused on areas with single vegetation types; however, the abiotic and biotic factors affecting community assembly act across regions. Integrating biotic and abiotic factors into “compound” habitats has gained attention as an emerging strategy to analyze spatial and temporal patterns of biodiversity. We used a compound habitat approach to explore the relative roles of habitat filtering, biotic competition, and stochastic processes in the forest community assembly of four climatic zones (tropical, subtropical, temperate, and cold temperate forests). Specifically, we combined biotic and abiotic factors in four compound ecological gradients by principal component analysis (PCA), which we used to assess the geographic and phylogenetic distribution of multiple woody plant functional traits. We found that forest functional and phylogenetic diversity shifted from clustered to overdispersed along the first compound habitat gradient (PC1) across climate zones. This finding indicates that competitive exclusion strongly affected the community assembly in tropical and subtropical forests, while habitat filtering played a key role in cold temperate forests; these mechanisms may both exist and interact in temperate forests. We also found that both habitat filtering and biotic competition affected forest community assembly across climatic regions in China. Our results elucidate the underlying mechanisms driving geographical differentiation of forest vegetation across climatic zones, and bolster empirical evidence for the conservation of forest biodiversity in China. Further research is also needed to explore whether the patterns found in this paper are prevalent in different locations in different climatic zones in China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call