Abstract

A fundamental understanding of isobaric thermal expansion behavior is critical in all areas of glass science and technology. Current models of glass transition and relaxation behavior implicitly assume that the thermal expansion coefficient of glass-forming systems can be expressed as a sum of vibrational and configurational contributions. However, this assumption is made without rigorous theoretical or experimental justification. Here we present a detailed statistical mechanical analysis resolving the vibrational and configurational contributions to isobaric thermal expansion and show experimental proof of the separability of thermal expansion into vibrational and configurational components for Corning Jade glass.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.