Abstract

First-principles calculations were carried out to investigate the finite-temperature elastic properties of Ti2AlX (X=C or N). In particular, the dependence of elasticity on temperature was determined through the stiffness-volume and volume-temperature relationships, i.e., volumetric stiffness and thermal expansion. The volumetric stiffness was achieved from the calculations of elastic constants at different volumes using the stress–strain approach. The thermal expansion was derived from the total free energy of the system taking into account both vibrational and electronic contributions. The vibrational contribution was calculated using the supercell method where the electronic contribution resulted from one-dimensional integration of electronic density of states (DOSs). Calculation results for Ti2AlC are in good agreements with available experiments for temperatures below 1600K. This lends the predictions of elastic properties for Ti2AlN, of which chemistry are close to Ti2AlC, the eligibility and reliability for the same range of temperature. For temperature above 1600K, the predictions tend to become less accurate since the DFT approach is not able to capture the fluctuation of external stress fields of which effect on thermal softening becomes stronger at higher temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.