Abstract

Isotopic exchange reactions in mixed D2O and H2O amorphous solid water (ASW) films were investigated using reflection absorption infrared spectroscopy. Nanoscale films composed of 5% D2O in H2O were deposited on Pt(111) and graphene covered Pt(111) substrates. At 130 K, we find that the reaction is strongly dependent on the substrate with the H/D exchange being significantly more rapid on the Pt(111) surface than on graphene. At 140 K, the films eventually crystallize with the final products on the two substrates being primarily HOD molecule on Pt(111) and a mixture of HOD and unreacted D2O on graphene. We demonstrate by pre-dosing H2 and O2 on Pt(111) that the observed differences in reactivity on the two substrates are likely due to the formation of hydrogen ions at the Pt(111) surface that are not formed on graphene. Once formed the mobile protons move through the ASW overlayer to initiate the H/D exchange reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.