Abstract

The crystallization of amorphous solid water (ASW) nanoscale films was investigated using reflection absorption infrared spectroscopy. Two ASW film configurations were studied. In one case the ASW film was deposited on top of and capped with a decane layer ("sandwich" configuration). In the other case, the ASW film was deposited on top of a decane layer and not capped ("no cap" configuration). Crystallization of ASW films in the "sandwich" configuration is about eight times slower than in the "no cap." Selective placement of an isotopic layer (5% D2O in H2O) at various positions in an ASW (H2O) film was used to determine the crystallization mechanism. In the "sandwich" configuration, the crystallization kinetics were independent of the isotopic layer placement whereas in the "no cap" configuration the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These results are consistent with a mechanism whereby the decane overlayer suppresses surface nucleation and provide evidence that the observed ASW crystallization in "sandwich" films is the result of uniform bulk nucleation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.