Abstract

The vibrational spectra of the azide-water complex, N3 -(H2O), and its fully deuterated isotopologue are studied using infrared photodissociation (IRPD) spectroscopy (800-3800 cm-1) and high-level ab initio computations. The IRPD spectrum of the H2-tagged complex exhibits four fundamental transitions at 3705, 3084, 2003, and 1660 cm-1, which are assigned to the free OH stretching, the hydrogen-bonded O-H stretching, the antisymmetric N3 stretching, and the water bending mode, respectively. The IRPD spectrum is consistent with a planar, singly hydrogen-bonded structure according to an MP2 and CCSD(T) anharmonic analysis via generalized second-order vibrational perturbation theory. The red-shift of the hydrogen-bonded OH stretching fundamental of 623 cm-1 associated with this structure is computed within 6 cm-1 (or 1%) and is used to estimate the proton affinity of azide (1410 kJ mol-1). Born-Oppenheimer molecular dynamics simulations show that large amplitude motions are responsible for the observed band broadening at cryogenic temperature. Temperature-dependent (6-300 K) IR multiphoton dissociation spectra of the untagged complex are also presented and discussed in the context of spectral diffusion observed in the condensed phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.