Abstract
The binding sites of water molecules to protonated Phe and its derivatives are investigated using infrared photodissociation (IRPD) spectroscopy and kinetics as well as by computational chemistry. Calculated relative energies for hydration of PheH(+) at various sites on the N- and C-termini depend on the type of theory and basis set used, and no one hydration site was consistently calculated to be most favorable. Infrared photodissociation (IRPD) spectra between approximately 2650 and 3850 cm(-1) are reported for PheH(+)(H(2)O)(1-4) at 133 K and compared to calculated absorption spectra of low-energy hydration isomers, which do not resemble the IRPD spectra closely enough to unambiguously assign spectral bands. The IRPD spectra of PheH(+)(H(2)O)(1-4) are instead compared to those of N,N-Me(2)PheH(+)(H(2)O)(1,2), N-MePheH(+)(H(2)O)(1-3), and PheOMeH(+)(H(2)O)(1-3) at 133 K, which makes possible systematic band assignments. A unique band associated with a binding site not previously reported for PheH(+)(H(2)O), in which the water molecule accepts a hydrogen bond from the N-terminus of PheH(+) and donates a weak hydrogen bond to the pi-system of the side chain, is identified in the IRPD spectra. IRPD kinetics at laser frequencies resonant with specific hydration isomers are found to be biexponential for N,N-Me(2)PheH(+)(H(2)O), N-MePheH(+)(H(2)O), and PheH(+)(H(2)O). Relative populations of ions with water molecules attached at various binding sites are determined from fitting these kinetic data, and relative energies for hydration of these competitive binding sites at 133 K are obtained from these experimental values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.