Abstract

The load sharing in the DC microgrids is affected by the practical factors such as the cable resistances and changes in the system topology. This paper presents a new control algorithm for the application in the DC microgrids to achieve accurate load distribution between droop controlled converters. An identical steady state voltage feedback is used for all droop controlled converters to ensure accurate current sharing. The information about the common voltage is obtained by means of the proposed communication-less control strategy. The proposed strategy does not require prior information about the grid topology and parameters. Therefore, it is applicable to both single- and multi-bus microgrids. The conducted stability analysis demonstrates that the proposed approach and the conventional droop control deomstrate similiar dynamic performance. Furthermore, the proposed algorithm has a potential to enhance the operation of the Interlinking Converters in the hybrid AC/DC microgrids. A comprehensive nonlinear simulation study is conducted in the Matlab/Simulink environment. The simulation results verify the effectiveness of the proposed communication-less control scheme to enable proper load distribution between droop controlled converters as well as enhance the load sharing between AC and DC microgrids. Finally, the proposed control approach is verified using an OPAL-RT setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.