Abstract

We use the high-level electronic structure computations based on the equation-of-motion coupled-cluster (EOMCC) theory to show that the previously postulated [V. Blanchet et al., J. Chem. Phys. 128, 164318 (2008)] doubly excited state of azulene, located below the ionization threshold and mediating the 1 + 2' multi-photon ionization that leads to a Rydberg fingerprint, exists. This supports the crucial role of doubly excited states in the Rydberg fingerprint spectroscopy, while demonstrating the usefulness of EOMCC methods in capturing such states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.