Abstract

Local photoionization pathways and charge-transfer dynamics of 2-phenylethyl-N,N-dimethylamine (PENNA) are explored using the recently developed Rydberg fingerprint spectroscopy. PENNA, a molecule that derives its biological significance from its relation to neurotransmitters, has two ionization centers that are separated by an ethyl group. We ionize the molecule in various multiphoton ionization processes using different laser wavelengths. The Rydberg fingerprint spectrum reveals the local nature of the ionization process and identifies the center of charge. We discovered that the laser wavelength provides substantial control over the activation of the individual ionization centers. The resonant (2+1) ionization with 400-nm radiation is dominated by the ejection of an electron from the amine moiety. In contrast, the resonant (1+1) ionization with 266-nm radiation leads predominantly to an ion with the charge in the phenyl group. The clean separation of the two ionization processes allows the exploration of ultrafast charge-transfer dynamics ensuing from a specific starting state characterized by a charged phenyl moiety. The width of the corresponding spectral features suggests that the charge transfer proceeds on a femtosecond time scale, suggesting a strong coupling between the two lowest-energy electronic surfaces of the PENNA cation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.