Abstract

Direct numerical simulations obtained in large computational domains of a fully developed turbulent channel flow up to the Karman number 1100 are analyzed to determine the scaling of the spanwise correlation coefficients and the effect of the outer eddies. The local fluctuating velocity field is narrow-band-pass and low-pass filtered along the streamwise wavenumber. The spanwise correlations of the narrow-band passed signals in the low buffer layer adequately provide length scales and signatures of the active structures. The low-pass filtering is used to investigate the relative role of the outer eddies. The impact of the active and passive eddies on the wall is analyzed separately through the cross-correlations of the filtered velocity field with the wall shear stress fluctuations. Characteristic length-scales resulting from the analysis of the velocity field differ depending on the quantity and some are related to the conventional streak spacing but not all. The quasi-streamwise vortex paradigm, for the most part, allows the interpretation of these characteristics, but fails in some cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.