Abstract

An extended experimental method is presented in which the micro-pillar shear-stress sensor (MPS 3 ) and high-speed stereo particle-image velocimetry measurements are simultaneously performed in turbulent channel flow to conduct concurrent time-resolved measurements of the two-dimensional wall-shear stress (WSS) distribution and the velocity field in the outer flow. The extended experimental setup, which involves a modified MPS 3 measurement setup and data evaluation compared to the standard method, is presented and used to investigate the footprint of the outer, large-scale motions (LSM) onto the near-wall small-scale motions. The measurements were performed in a fully developed, turbulent channel flow at a friction Reynolds number R e τ = 969 . A separation between large and small scales of the velocity fluctuations and the WSS fluctuations was performed by two-dimensional empirical mode decomposition. A subsequent cross-correlation analysis between the large-scale velocity fluctuations and the large-scale WSS fluctuations shows that the streamwise inclination angle between the LSM in the outer layer and the large-scale footprint imposed onto the near-wall dynamics has a mean value of Θ ¯ x = 16.53 ∘ , which is consistent with the literature relying on direct numerical simulations and hot-wire anemometry data. When also considering the spatial shift in the spanwise direction, the mean inclination angle reduces to Θ ¯ x z = 13.92 ∘ .

Highlights

  • The simultaneous spatial and temporal resolution of the two-dimensional wall-shear stress (WSS)distribution and the outer flow field in experimental measurements is rather challenging

  • Since the micro pillar can be described as a clamped cylindrical beam by linear bending theory [26], the point load arising from the impinging particle was used to calculate the micro-pillar deflection

  • An extended approach is introduced in which the time-resolved two-dimensional wall-shear stress (WSS) distribution is simultaneously acquired with the time-resolved two-dimensional velocity field in the outer layer of a fully developed turbulent channel flow at a friction Reynolds number Reτ = 969

Read more

Summary

Introduction

The simultaneous spatial and temporal resolution of the two-dimensional wall-shear stress (WSS)distribution and the outer flow field in experimental measurements is rather challenging. E.g., by Mathis et al [1], Baars et al [2], used intrusive hot-wire anemometry (HWA) methods to resolve the flow field in the near-wall region and in the outer layer of a turbulent boundary layer (TBL). This technique is one of the basic measurement methods in fluid mechanics due to its accessibility and reasonable compromises, e.g., the drawback of only providing pointwise information [3].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call