Abstract

Motor units (MUs) are the basic unit of motor control. MU synchronization has been evaluated to identify common inputs in neural circuitry during motor coordination. Recent studies have compared common inputs between muscles in the lower limb, but further investigation is needed to compare common inputs to MUs both within a muscle and between MUs of different muscle pairs. The goal of this preliminary study was to characterize levels of common inputs to MUs in three muscle groups: MUs within a muscle, between bilateral homologous pairs, and between agonist/antagonist muscle pairs. To achieve this, surface electromyography (EMG) was recorded during bilateral ankle dorsiflexion and plantarflexion on the right and left tibiales anterior (RTA, LTA) and gastrocnemii (RGA, LGA) muscles. After decomposing EMG into active MU firings, we conducted coherence analyses of composite MU spike trains (CSTs) in each muscle group in both the beta (13-30 Hz) and gamma (30-60 Hz) frequency bands. Our results indicate MUs within a muscle have the greatest levels of common input, with decreasing levels of common input to bilateral and agonist/antagonist muscle pairs, respectively. Additionally, each muscle group exhibited similar levels of common input between the beta and gamma bands. This work may provide a way to unveil mechanisms of functional coordination in the lower limb across motor tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.