Abstract
Schizophrenia and depression are psychiatric disorders with overlapping clinical and biological features. This study aimed to identify common and distinct neuropathological mechanisms in schizophrenia and depression patients using resting-state functional magnetic resonance imaging (fMRI). The study included 28 patients with depression (DEP), 29 patients with schizophrenia (SCH), and 30 healthy control subjects (HC). Intrinsic connectivity contrast (ICC) was used to identify functional connectivity (FC) changes at the whole-brain level, and significant ICC differences were found in the bilateral orbitofrontal cortex (OFC) across all three groups. Further seed-based FC analysis indicated that compared to the DEP and HC groups, the FC between bilateral OFC and medial prefrontal cortex (MPFC), right anterior insula, and right middle frontal gyrus were significantly lower in the SCH group. Additionally, the FC between right OFC and left thalamus was decreased in both patient groups compared to the HC group. Correlation analysis showed that the FC between OFC and MPFC was positively correlated with cognitive function in the SCH group. These findings suggest that OFC connectivity plays a critical role in the pathophysiology of schizophrenia and depression and may provide new insights into the potential neural mechanisms underlying these two disorders.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have