Abstract
Gaze is stabilized during head movements primarily by the vestibuloocular reflex (VOR). After a unilateral canal plug, the VOR's response is reduced. Recovery of the VOR may be brought about by changes in the efficacy of brain stem synapses or by other mechanisms. We measured the responses of horizontal secondary vestibular neurons (HSNs) to stimulation of the contralateral labyrinth. HSN responses in normal alert cats were compared with those in cats that had recovered from unilateral horizontal semicircular canal (HSCC) plugs. After recovery, excitatory commissural inputs to HSNs on the plugged side elicited significantly smaller responses than in normal cats with no change in mean discharge rates. However, mean discharge rates tended to be higher after recovery for cells receiving inhibitory commissural inputs. The change in resting rate invalidates any direct comparison of inhibitory inputs. These results are interpreted in terms of possible mechanisms for recovery from unilateral vestibular loss by the VOR neural network. We conclude that after unilateral HSCC plugs, changes in brain stem excitatory synapses and/or excitability of secondary vestibular neurons may participate in the restoration of normal vestibular reflexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.