Abstract

The NAtional Nuclear Array (NANA) is a LaBr3(Ce)-based coincidence gamma-ray spectrometer which can be used to identify, and enhance with respect to the background, signature gamma-ray emissions associated with particular radionuclide decays from a complex multi-component spectrum. Gamma-ray energy coincidence measurements using the NANA have been made using a digital data acquisition system based on CAEN V1751C 1GHz digitizers. The improved time resolution offered by LaBr3(Ce) crystals compared to similar-sized solid state detectors can provide narrow time-correlated, gamma-ray energy coincidence matrices that can be interrogated to select discrete gamma-ray emissions associated with particular radionuclide decays. This paper provides an overview of the operational characteristics of the NANA spectrometer, including energy resolution and full-energy peak efficiency parameters, and provides an example of double and triple gamma-ray coincidence gating on decays associated with the nuclear fuel waste product 134Cs. The full-energy peak efficiency response of the spectrometer is compared to Monte Carlo GEANT4 simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call