Abstract

This paper describes the commissioning of a novel test bench for the static and dynamic characterization of large tilting pad journal bearings, realized within a collaboration of the Department of Civil and Industrial Engineering of the University of Pisa, BHGE and AM Testing.The adopted test bench configuration has the test article (TA) floating at the mid-span of a rotor supported by two rolling bearings. The TA is statically loaded vertically upwards by a hydraulic actuator and excited dynamically by two orthogonal hydraulic actuators with multiple frequency sinusoidal forces. The test rig is capable of testing bearings with a diameter from 150 to 300 mm. It includes very complex mechanical, hydraulic, electrical and electronic components, and needs, for the whole plant, about 1 MW of electric power.The commissioning of the testing system involved several aspects and presented various issues. This work focuses on measuring systems and data acquisition of high-frequency data (forces, accelerations and relative displacements) and on data processing for the identification of the bearing dynamic coefficients. The identification procedure is based on the linearity assumption and the principle of superposition, operating in the frequency domain with the fast Fourier transforms of the applied forces and displacement signals. First results, referred to a 4-pad bearing, are in satisfactory agreement with theoretical ones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call