Abstract

Three-dimensional printing of high laser reflectivity metals and metal matrix composites continues to be a challenge because of loss of laser energy and lack of high-quality composite powders. Modifying powders to enhance the interaction between laser and powder and improve the uniformity of reinforcement is a possible solution. However, traditional powder mixing methods such as ball milling destroy the spherical nature of powders. We report here commercial-scale coating of powder by electroless plating for high laser-reflectivity metals and fluidized bed chemical vapor deposition (FBCVD) for composite powders without changing the sphericity. The results indicated that coating high-laser-absorptivity Co and Ni on Al powder enhances the printability leading to good physical and mechanical properties. Similarly, the composite powder made by FBCVD had a good combination of uniformity, sphericity and flowability, which also exhibited improved printability and excellent mechanical properties for the printed bulk composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call