Abstract
Potassium and magnesium are important electrolytes which have to be ingested in sufficient amounts. They differ in the necessary daily intake (about 100 mmol potassium, about 12 mmol magnesium), the degree of intestinal absorption (potassium almost 100%, magnesium about 30%) and the distribution between the extracellular and intracellular space. If there is a deficiency in potassium or magnesium, it is necessary to substitute these materials. Deficiency of potassium is not rarely combined with deficiency of magnesium. The concentration gradient between intra- and extracellular potassium mainly determines the resting membrane potential of the cell. Lower extracellular potassium may lead to an instable membrane potential because of a decrease in potassium conductance. An increase in extracellular potassium concentration leads to the depolarization of the cell. Extracellular potassium activates the sodium potassium pump and thereby prevents an increased intracellular accumulation of sodium and calcium. Important effects of extracellular magnesium are: calcium antagonism, increase of excitation threshold and inhibition of transmitter release. By increasing the plasma concentration of magnesium, it is possible to exert pharmacodynamic effects. An increase above the normal range usually is only possible by parenteral application. However, a slight elevation can already be achieved by oral application. This increase may lead to limited pharmacodynamic effects. By elevation of the extracellular magnesium concentration, adverse, depolarisation-dependent effects of an increase in extracellular potassium concentration (for example slowing of conduction of excitation) can be compensated. This effect can be explained by a magnesium-dependent decrease of the membrane surface potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.