Abstract
The observation of chiral-induced spin selectivity (CISS) in biological molecules still awaits a full theoretical explanation. In a recent Rapid Communication, Varela et al. [Phys. Rev. B 101, 241410(R) (2020)] presented a model for electron transport in biological molecules by tunneling in the presence of spin-orbit interactions. They then claimed that their model produces a strong spin asymmetry due to the intrinsic atomic spin-orbit strength. As their Hamiltonian is time-reversal symmetric, this result contradicts a theorem by Bardarson [J. Phys. A: Math. Theor. 41, 405203 (2008)], which states that such a Hamiltonian cannot generate a spin asymmetry for tunneling between two terminals (in which there are only a spin-up and a spin-down channels). Here we solve the model proposed by Varela et al. and show that it does not yield any spin asymmetry, and therefore cannot explain the observed CISS effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.