Abstract
Bathymetric data are essential for accurate predictions of flooding in estuaries, because water depth is a fundamental component in the shallow-water hydrodynamic equations used in numerical models. Where LiDAR or acoustic in-situ surveys are unavailable, recent efforts have centred on the use of satellite images to estimate bathymetry (SDB). This work is aimed at (1) determining the accuracy of SDB, and (2) assessing the suitability of the SDB for surge/tidal modelling of estuaries. The SDB is created by extracting the waterline as it tracks over the bathymetry with changing tides, and is applied to 4 different estuaries in New Zealand: Whitianga, MaketÅ«, Åhiwa and Tauranga Harbour. Results show that the waterline method provides similar bathymetries to the LiDAR with root-mean squared error equal to 0.2 m, and it is slightly improved when two proposed correction methods are applied to the bathymetry derivations: the removing of statistical bias (by 2 cm) and hydrodynamic modelling correction (by 1 cm). Finally, the use of SDB in numerical simulations of surge levels is assessed for Tauranga Harbour with 4 different scenarios that explore the use of SDB in comparison to bathymetry data collected using non-satellite survey methods. One of these includes the well-known Stumpf-ratio method to extract the SDB of subtidal regions (so that only satellite information is used). The use of the satellite derived bathymetry in hydrodynamic models does not result in significant differences in terms of water levels, when compared with the scenario modelled using surveyed bathymetry.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have