Abstract
<strong class="journal-contentHeaderColor">Abstract.</strong> Global monitoring of aerosols is required to analyse the impacts of aerosols on air quality and to understand their role in modulating the climate variability. The Copernicus Atmosphere Monitoring Service (CAMS) provides near real time forecasts and reanalyses of aerosols using the ECMWF Integrated Forecasting System (IFS), constrained by the assimilation of MODIS and PMAp Aerosol Optical Depth (AOD). Given the potential end-of-lifetime of MODIS AOD, implementing new AOD observations in the CAMS operational suite is a priority to ensure the continuity of the CAMS forecast performances. The objective of this work is to test the assimilation of the NOAA VIIRS AOD product from S-NPP and NOAA20 satellites in the IFS model. Simulation experiments assimilating VIIRS on top or in place of MODIS were carried out from June 2021 to November 2021 to evaluate the impacts on the AOD analysis. For maritime aerosol background, the assimilation of VIIRS and the use of VIIRS from NOAA20 as an anchor reduce the analysis AOD values compared to MODIS-based experiments, in which the analysis values were too high due to the positive bias of MODIS/TERRA over ocean. Over land, the assimilation of VIIRS induces a large increase in the analysis over biomass burning regions where VIIRS shows larger AOD than MODIS. For dust source regions, the analysis is reduced when VIIRS is assimilated on top of or in place of MODIS, particularly over the Sahara, Arabian Peninsula and few places in Asia in the July-August period. The assimilation of VIIRS leads to an overall reduction of the bias in AOD analysis evaluated against AERONET measurements with the largest bias reduction over Europe, desert, and maritime sites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.