Abstract

There is a deep atmospheric boundary layer on the Tibetan Plateau (TP) that has always been of interest to researchers. The variation in the atmospheric boundary layer under the influence of the southern branch of the westerly wind and that of the Asian monsoon was analyzed using sounding data collected in 2014 and 2019. Then, the hourly high-resolution comprehensive observation data for the land-atmosphere interaction on the TP and the ERA5 reanalysis data were used to study the influence of the atmospheric boundary layer’s structure in Mount Everest, Nyingchi, Nam Co, Nagqu, and Shiquan River regions. The results show that the height of the convective boundary layer observed at the Mount Everest, Nyingchi, Nam Co, Nagqu, and Shiquan River stations on the TP under the influence of the southern branch of the westerly wind was higher than that during the Asian monsoon season. The height of the convective boundary layer in the Shiquan River area was often highest at 20:00. The structure of the boundary layer in the Mount Everest area was often affected by the westerly jets and glacial winds. The inversion layer developed earlier in the Nyingchi area than at the other stations. The height of the boundary layer was positively correlated with the sensible heat flux and negatively correlated with the latent heat flux. The vertical velocity in the atmospheric boundary layer in the Nyingchi area decreased, which may be one of the reasons why the height of the convective boundary layer was lower in this area than at the other stations and humidity inversion often occurred in this area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.