Abstract

In this paper, the containment control problem of a class of fractional-order nonlinear multi-agent systems is studied, in which the multi-agent system contains unmeasured states and system nonlinearity. An adaptive neural network backstepping controller combined with event-triggered mechanism is proposed to ensure all followers can converge to the convex hull spanned by the leaders. The command filter is introduced into the proposed fractional-order control system to obtain fractional derivatives for virtual control functions continuously and avoid “explosion of complexity.” From the Lyapunov stability theory, all the signals can remain semi-global uniformly ultimately bounded in the closed-loop system. Numerical example and simulation results confirm the feasibility of the proposed control method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call