Abstract

This article investigates the event-triggered adaptive containment control problem for a class of stochastic nonlinear multiagent systems with unmeasurable states. A stochastic system with unknown heterogeneous dynamics is established to describe the agents in a random vibration environment. Besides, the uncertain nonlinear dynamics are approximated by radial basis function neural networks (NNs), and the unmeasured states are estimated by constructing the NN-based observer. In addition, the switching-threshold-based event-triggered control method is adopted with the hope of reducing communication consumption and balancing system performance and network constraints. Moreover, we develop the novel distributed containment controller by utilizing the adaptive backstepping control strategy and the dynamic surface control (DSC) approach such that the output of each follower converges to the convex hull spanned by multiple leaders, and all signals of the closed-loop system are cooperatively semi-globally uniformly ultimately bounded in mean square. Finally, we verify the efficiency of the proposed controller by the simulation examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.