Abstract
The use of memristors, also known as Resistive Random Access Memory (ReRAM), has been widely investigated in recent years for non-volatile memory design applications. Memristors can also be used for realizing logic operations, leading to new in-memory computing (IMC) architectures. However, the presence of sneak paths in crossbar arrays limits the practical use of such systems. In this paper, we introduce a novel sneak path-free ReRAM system capable of both memory and logic operations using Complementary Resistive Switches (CRS) or Complementary Memristors (CMs) crossbar array. CMs can mitigate the effect of sneak paths and are good candidates for realizing three-dimensional memory array. A novel IMC-enabled two-dimensional (2D) and three-dimensional (3D) crossbar architecture have been proposed. The devices are modeled using the VTEAM memristor model and can perform majority (MAJ) gate operations directly on the crossbar. A logic mapping approach is also proposed, allowing serial and parallel evaluation of MAJ operations for given high-level logic functions. The efficacy of the approach has been evaluated by estimating the computation cycles, crossbar size, delay, and energy for various benchmark functions. The results show that the proposed method yields up to 91.19% improvement over an existing IMC method in computation steps and 78.90% reduction in terms of the number of memristors required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.