Abstract

This paper describes improved ride comfort of a novel nonlinear suspension for seat system based on field measurements. For the novel nonlinear suspension proposed, a rubber spring is used as its elastic element which has highly nonlinear characteristics to adapt various working conditions, and an asymmetrical damper is designed to yield asymmetric damping characteristics. Previous seat models were not very suitable for the system; thus, a nonlinear mathematical model was built to describe it better. Then, based on field measurements, the model parameters were identified, and the suspension damping coefficients were tuned under the practical constraints, to achieve satisfactory ride comfort to the greatest extent possible. Finally, the bench test was carried out, and the results show that, after the coefficients tuning, the seat vertical frequency-weighted root mean square (RMS) acceleration values are decreased by about 10% and 8% under the driving conditions on the highway and the gravel road, respectively, which proves the damping coefficients tuned are workable. The novel nonlinear suspension and the method of the damping coefficients tuning provide a valuable reference for further improving ride comfort to better protect the driver’s health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call