Abstract

Liquid propellants are commonly used in rocket engines due to their high energy density. In this study, we focused on the use of liquid ethanol and liquid nitrous oxide as propellants in a cylindrical rotating detonation engine (RDE) for practical applications, and examined the effects of various conditions on the bipropellant RDE performance. We varied the vapor quality of nitrous oxide in a mixture of liquid and gaseous nitrous oxide due to the flash boiling. In addition, we varied the liquid ethanol temperature, the injector stiffness, and momentum angle of the propellant. We then analyzed the effects of these changes on the propagation mode of the RDE under atmospheric pressure conditions. The results showed that a rotating detonation wave was observed under the combination of high vapor quality of nitrous oxide, high injector stiffness, high liquid ethanol temperature, and high momentum angle. The propagation velocity was obtained as 73∼83 % of the Chapman-Jouguet velocity. Long-duration combustion tests were also conducted, and the internal combustion structure was confirmed from the erosion of the carbon-carbon (C/C) composite material. The detonation wave was considered to propagate near the bottom of the RDE with liquid propellants from the erosion heights of the C/C composite. The erosion height was confirmed to be consistent with the fill height calculated using the sound speed of the nitrous oxide. In addition, characteristic exhaust velocity efficiencies of more than 85 % were achieved in all combustion tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.