Abstract

This numerical study investigates the combustion modes in the second stage of a sequential combustor at atmospheric and high pressure. The sequential burner (SB) features a mixing section with fuel injection into a hot vitiated crossflow. Depending on the dominant combustion mode, a recirculation zone assists flame anchoring in the combustion chamber. The flame is located sufficiently downstream of the injector resulting in partially-premixed conditions. First, combustion regime maps are obtained from 0-D and 1-D simulations showing the co-existence of three combustion modes: autoignition, flame propagation and flame propagation assisted by autoignition. These regime maps can be used to understand the combustion modes at play in turbulent sequential combustors, as shown with 3-D large eddy simulations (LES) with semi-detailed chemistry. In addition to the simulation of steady-state combustion at three different operating conditions, transient simulations are performed: (i) ignition of the combustor with autoignition as the dominant mode, (ii) ignition that is initiated by autoignition and that is followed by a transition to a propagation stabilized flame, and (iii) a transient change of the inlet temperature (decrease by 150 K) resulting into a change of the combustion regime. These results show the importance of the recirculation zone for the ignition and the anchoring of a propagating type flame. On the contrary, the autoignition flame stabilizes due to continuous self-ignition of the mixture and the recirculation zone does not play an important role for the flame anchoring. These findings are important for the design and operation of practical sequential combustion systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call