Abstract

Research on alternative fuel production and compression ignition (CI) engine improvement techniques is more attractive recently. Waste-to-wealth concept refers that the utilization of the waste of soapberry seed and exhaust gas to run the common rail direct fuel injection type diesel engine by optimizing their contribution through experimental analysis is the novelty of this investigation. The recirculation of exhaust gas plays important role in improving the combustion in the engine, reducing the emissions, and improving the engine performance. Soapberry seed oil methyl ester economizes diesel consumption by mixing it into diesel. Transesterification is the method used to turn soapberry seed oil into biodiesel. In the common rail direct injection (CRDI) engine, a 10%, 20%, or 30% blend of soapberry seed oil methyl ester (SSOB) with diesel is utilized as fuel. For each mix, 10%–30% of the volume of SSOB is added to the rest of the diesel. Along with these fuel types, exhaust gas recirculation (EGR) is used from 10% to 30% to test and optimize the best combinations for CRDI engines. The experimental results show that pure diesel with EGR recorded high heat release rate (HRR) and brake thermal efficiency (BTE) at the highest load possible. The maximum BTE of the tested tracks is 26.83% because of better combustion, which was achieved with 10% EGR and a combination of 30% SSOB and 70% Diesel. The increase in EGR such as 30% in 30% of SSOB with 70% of Diesel blend produced reduced NOx emission (865 ppm), smoke opacity (13%), and hydrocarbon (HC) emissions (10 ppm) than diesel fuel because of the dilution and chemical effects during combustion. Accordingly, the present research reveals that a 30% of soapberry seed oil methyl ester blend with 30% EGR is recommended for engine usage with lesser emission with better combustion and performance characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.